
Quantitative Finance Qualifying Exam 

2018 Summer 
 

INSTRUCTIONS 
You have 4 hours to do this exam. 

 

Reminder: This exam is closed notes and closed books. No electronic devices are permitted. 

Phones must be turned completely off for the duration of the exam. 

 

PART 1: Do 2 out of problems 1, 2, 3. 

PART 2: Do 2 out of problems 4, 5, 6. 

PART 3: Do 2 out of problems 7, 8, 9. 

PART 4: Do 2 out of problems 10, 11, 12. 

 

All problems are weighted equally. 

On this cover page write which eight problems you want graded. 

Problems to be graded: 
 

 

Academic integrity is expected of all students at all times, whether in the presence or absence of 

members of the faculty. 

Understanding this, I declare that I shall not give, use, or receive unauthorized aid in this 

examination. 
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1. Spot Rate Computation and Applications 
 

You are given the following information. Assume annual compounding throughout. 

• A 1-year zero-coupon bond with a face value of $10,000 sells at a discount of $9,900. 

• A 2-year bond with a face value of $10,000 and an annual coupon of $300 sells at 

premium of $10,100. 

• A 3-year bond with a face value of $100,000 and an annual coupon of $3,100 sells at 

a discount of $99,156. 

Solve for the following: 

a) Spot Curve: Using the market data, above bootstrap the 3-year spot curve. 

b) Bond Valuation: Using the spot rates computed above compute the price of a 3-year 

bond with a face value of $1,000,000 and annual coupon of $4,000. 

c) Forward Rate: Compute the forward rate f2,3. 
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2. Market Portfolio 
 

Consider the following simple quadratic program representing the portfolios on the 

Capital Market Line (CML) and its solution to proportionality. The parameters  and , 

are the returns' mean vector and covariance matrix, respectively, and rf is the risk-free 

rate. The value of  ≥ 0 parameterizes the CML: 

  

Assume the Capital Asset Pricing Model (CAPM), i.e., at time t for an asset i with return 

ri(t), market M with return rM(t) and risk-free rate rf, and mean-zero, uncorrelated error 

terms i(t), the following expression holds 

ri (t)- rf = bi (rM (t)- rf )+ ei (t)  

Let M = E[rM] and M
2 = Var[rM]. 

a) Express the mean vector  in terms of the CAPM parameters. 

b) Express the covariance matrix  in terms of the CAPM parameters. 

c) Show that the covariance matrix  is positive definite.  

d) Show that the value of xi, the allocation of asset i in the market portfolio, is 

proportional to 

		

x
i
µ

b
i

Var[e
i
]
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3. Options 
 

Solve the following stock options problems in terms of vanilla European puts and calls and, if 

required, a cash position. 

a) For a non-dividend-paying stock, derive the expression for put-call parity.  

An investor owns a stock with current price S(t). The company in question is facing a lawsuit 

where if it wins, the price will increase dramatically and if it loses the price will decline 

dramatically. The judge deciding the suit has indicated that she will issue her decision on or before 

time T. The outcome is uncertain and the investor believes the company is as likely to win as lose 

the suit.  

b) Construct an options portfolio that will have the potential for the investor to profit 

regardless of the judge’s decision.  

c) Under what conditions will this portfolio fail to realize a profit for the investor? 
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4. Power Law Model 
 
We wish to investigate the lower tail of a return distribution. Let Q(r) = Prob[R  ≥ r] denote the 

survival function of the return r. A plot of the log survival function for log r for r ≥ 0 is shown 

below. 

 

a) Does the distribution of r display at any point evidence that the tail of the distribution follows 

a power law? Explain what you looked for to determine this. 

b) If so, at what point does that behavior emerge? Explain your answer. 

c) If there is evidence of a power law in the tail, estimate its exponent. Employ a simple visual 

approximation but explain how you accomplished it. If not, hypothesize a reasonable return 

distribution. 

d) Based on your work above, define to proportionality the PDF and CDF of the upper tail in 

the power law region. 

e) What can you say about the existence of the moments of the distribution based on the work 

above? Explain you answer. 
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5. Markowitz Optimization 
 

Assume that returns follow a multivariate Normal distribution with mean vector  positive-

definite covariance matrix , and risk-free rate rf.  The mean-variance portfolio optimization 

with unit capital is the quadratic program below. Note that both long and short positions are 

allowed in this instance. 

ℳ = min𝐱 {
1

2
𝐱𝑇𝚺 𝐱 − λ (𝛍𝑇 − 𝑟𝑓)

𝑻𝐱 | 𝟏𝑇𝐱 = 1} 

The risk-reward trade-off is controlled by the parameter 0 ≤ . 

a) Assuming an investor population of mean-variance optimizers, derive an expression for the 

market (i.e., tangent) portfolio. 

b) Given that different investors have different return goals or risk preferences, explain how an 

investor uses cash and the market portfolio to achieve them.  

c) Explain why the approach you described in (b) above is superior in mean-variance terms to 

any other strategy. 
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6. Marchenko-Pastur Distribution 
 

You are given the returns of N = 100 assets over T = 250 time periods. 

a) Compute the parameter q for the Marchenko-Pastur distribution of eigenvalues for a 

correlation matrix of uncorrelated assets for an estimation problem of this type. 

b) Compute the lower and upper bound for the associated Marchenko-Pastur distribution given 

q. 

c) You are given the partial list of sorted eigenvalues of the sample correlation matrix: {15.2, 

8.2, 4.2, 3.1, 2.8, 2.2, 1.8, 1.6, 1.5, 1.4, 1.3, …}. Based solely on the distribution (without any 

adjustment for sample size), which eigenvalues appear to be statistically meaningful? 
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7. Kendall’s Tau of Gaussian Copula 
 

Let X = (X1, X2) be a bivariate Gaussian copula with correlation 
√3

2
 and continuous margins. 

Show that the Kendall’s  is: 

𝜌𝜏 =
2

3
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8. VaR in ARCH Model 
 

Consider the following AR(1)-ARCH(1) model for the daily return rt of an asset: 

𝑟𝑡 = 𝜃𝑟𝑡−1 + 𝑢𝑡 𝑢𝑡 = 𝜎𝑡𝜀𝑡 𝜎𝑡
2 = 𝜔 + 𝛼𝑢𝑡−1

2  

where –1 <  < 1,  > 0 and   (0,1). 

What is the 99% 2-day VaR of a long position at time t ? 
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9. Risk Premium 
 

The beta, denoted by i , of a risky asset i that has return ri is defined by: 

𝛽𝑖 =
Cov(𝑟𝑖, 𝑟𝑀)

𝜎𝑀
2  

where rM is the market return and M is its standard deviation. 

The capital asset pricing model (CAPM) relates the expected excess return (also called the risk 

premium) i – rf of the asset i to its beta via: 

i – rf = i (M – rf)     (1) 

where rf is the risk-free rate and M – rf is the market expected excess return. 

The security market line refers to the linear relationship (1) between the expected excess returns 

i – rf and M – rf. Derive equation (1). 
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10. Black-Scholes-Kolmogorov Equation 
 

Consider a stock following a log-normal process: 

dSt = (r – q) St dt +  St dW 

1. Compute the probability distribution of 𝑥𝑇 = Ln (
𝑆𝑇

𝑆𝑡
) given St. 

2. Prove the Black-Scholes formula for a Call option with maturity T and strike K : 

C(t, S, K, T) = e–r(T – t) (F N(d1) – K N(d2))    (1) 

 Where F = e(r – q)(T – t)S is the forward, 𝑑1 =
𝐿𝑛(𝐹 𝐾⁄ )

𝜎√𝑇−𝑡
+

1

2
𝜎√𝑇 − 𝑡  and 𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡 

 𝑁(𝑥) = ∫ 𝑔(𝑠)𝑑𝑠
𝑥

−∞
 is the normal cumulative function, with 𝑔(𝑥) =

1

√2𝜋
𝑒−

1

2
𝑥2

 

3. Compute the “Greeks”: 

Δ =
𝜕𝐶

𝜕𝑆
  Γ =

𝜕2𝐶

𝜕𝑆2
 𝜃 =

𝜕𝐶

𝜕𝑡
 

4. Prove that C satisfies the Black-Scholes-Kolmogorov P.D.E. 

𝜕𝐶

𝜕𝑡
+

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
+ (𝑟 − 𝑞)𝑆

𝜕𝐶

𝜕𝑆
− 𝑟𝐶 = 0    (2) 

If you are short in time, you may either do 1 and 2 only (i.e. prove Black-Scholes formula (1)) or 

admit formula (1) and do 3 and 4 (i.e. prove Black-Scholes equation (2)) 
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11. Ornstein-Uhlenbeck Process 
 

We consider a stochastic process Xt with mean-reversion: 

dXt =  (c – Xt) dt +  dW 

Such a process, called Ornstein-Uhlenbeck, is known for having a Gaussian distribution, which 

we would like to compute. 

1. Given a function f(x) satisfying 
𝑑𝑓

𝑑𝑥
= 𝛽 − 𝛼𝑓(𝑥), compute f(x) with respect to f(0), ,  and t. 

2. Find a differential equation satisfied by mt = E(Xt) and compute mt with respect to X0 and t. 

What is lim
𝑡→+∞

𝑚𝑡 ? 

3. Find a differential equation satisfied by vt = Var(Xt) and compute vt with respect to X0 and t. 

What is lim
𝑡→+∞

𝑣𝑡 ? 
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12. Doob Theorem 
 

Doob-Meyer decomposition theorem of a semi-martingale into a martingale and the rectifiable 

process has a discrete-time version, initially due to Joseph Doob (published in 1953, before 

Meyer’s generalization to continuous time processes in 1962-63) 

Consider a filtration (t)tN with discrete time t = 0,1,2… and a Markov process Xt . 

We remind the Markov property: The conditional distribution of Xt+1 knowing the previous value 

Xt is the same as that knowing the whole past (Xs)st . 

A process At is predictable if At is measurable with respect to t–1, in other words, its value is 

known using information until t – 1. 

A process Mt is a martingale if it satisfies E(Mt+1 | t) = Mt, in other words, if it has no drift. 

Prove the following theorem: 

Theorem (Doob): Any Markov process (in discrete time) can be uniquely decomposed as: 

Xt = At + Mt 

Where At is a predictable process and Mt is a martingale satisfying M0 = 0. 

Hint: Consider E(Xt | t-1) 
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Scratch paper 1 
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Scratch paper 2 
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Scratch paper 15 


